Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast.

Identifieur interne : 000035 ( Main/Exploration ); précédent : 000034; suivant : 000036

TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast.

Auteurs : Mayur Nimbadas Devare [Corée du Sud] ; Yeong Hyeock Kim [Corée du Sud] ; Joohye Jung [Corée du Sud] ; Woo Kyu Kang [Corée du Sud] ; Ki-Sun Kwon [Corée du Sud] ; Jeong-Yoon Kim [Corée du Sud]

Source :

RBID : pubmed:32449834

Abstract

Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+ -dependent protein deacetylase, which regulates the expression of the ATP-dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho-mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)-like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2-Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.

DOI: 10.1111/acel.13151
PubMed: 32449834
PubMed Central: PMC7294778


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast.</title>
<author>
<name sortKey="Devare, Mayur Nimbadas" sort="Devare, Mayur Nimbadas" uniqKey="Devare M" first="Mayur Nimbadas" last="Devare">Mayur Nimbadas Devare</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yeong Hyeock" sort="Kim, Yeong Hyeock" uniqKey="Kim Y" first="Yeong Hyeock" last="Kim">Yeong Hyeock Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jung, Joohye" sort="Jung, Joohye" uniqKey="Jung J" first="Joohye" last="Jung">Joohye Jung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Woo Kyu" sort="Kang, Woo Kyu" uniqKey="Kang W" first="Woo Kyu" last="Kang">Woo Kyu Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kwon, Ki Sun" sort="Kwon, Ki Sun" uniqKey="Kwon K" first="Ki-Sun" last="Kwon">Ki-Sun Kwon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jeong Yoon" sort="Kim, Jeong Yoon" uniqKey="Kim J" first="Jeong-Yoon" last="Kim">Jeong-Yoon Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32449834</idno>
<idno type="pmid">32449834</idno>
<idno type="doi">10.1111/acel.13151</idno>
<idno type="pmc">PMC7294778</idno>
<idno type="wicri:Area/Main/Corpus">000069</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000069</idno>
<idno type="wicri:Area/Main/Curation">000069</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000069</idno>
<idno type="wicri:Area/Main/Exploration">000069</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast.</title>
<author>
<name sortKey="Devare, Mayur Nimbadas" sort="Devare, Mayur Nimbadas" uniqKey="Devare M" first="Mayur Nimbadas" last="Devare">Mayur Nimbadas Devare</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Yeong Hyeock" sort="Kim, Yeong Hyeock" uniqKey="Kim Y" first="Yeong Hyeock" last="Kim">Yeong Hyeock Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jung, Joohye" sort="Jung, Joohye" uniqKey="Jung J" first="Joohye" last="Jung">Joohye Jung</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kang, Woo Kyu" sort="Kang, Woo Kyu" uniqKey="Kang W" first="Woo Kyu" last="Kang">Woo Kyu Kang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kwon, Ki Sun" sort="Kwon, Ki Sun" uniqKey="Kwon K" first="Ki-Sun" last="Kwon">Ki-Sun Kwon</name>
<affiliation wicri:level="1">
<nlm:affiliation>Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kim, Jeong Yoon" sort="Kim, Jeong Yoon" uniqKey="Kim J" first="Jeong-Yoon" last="Kim">Jeong-Yoon Kim</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</nlm:affiliation>
<country xml:lang="fr">Corée du Sud</country>
<wicri:regionArea>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon</wicri:regionArea>
<wicri:noRegion>Daejeon</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Aging cell</title>
<idno type="eISSN">1474-9726</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD
<sup>+</sup>
-dependent protein deacetylase, which regulates the expression of the ATP-dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho-mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)-like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2-Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32449834</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1474-9726</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
</PubDate>
</JournalIssue>
<Title>Aging cell</Title>
<ISOAbbreviation>Aging Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>e13151</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/acel.13151</ELocationID>
<Abstract>
<AbstractText>Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD
<sup>+</sup>
-dependent protein deacetylase, which regulates the expression of the ATP-dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho-mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)-like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2-Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Devare</LastName>
<ForeName>Mayur Nimbadas</ForeName>
<Initials>MN</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Yeong Hyeock</ForeName>
<Initials>YH</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jung</LastName>
<ForeName>Joohye</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kang</LastName>
<ForeName>Woo Kyu</ForeName>
<Initials>WK</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kwon</LastName>
<ForeName>Ki-Sun</ForeName>
<Initials>KS</Initials>
<AffiliationInfo>
<Affiliation>Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Jeong-Yoon</ForeName>
<Initials>JY</Initials>
<Identifier Source="ORCID">0000-0001-5873-2069</Identifier>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Korea.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Aging Cell</MedlineTA>
<NlmUniqueID>101130839</NlmUniqueID>
<ISSNLinking>1474-9718</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Saccharomyces cerevisiae </Keyword>
<Keyword MajorTopicYN="Y">Pma1</Keyword>
<Keyword MajorTopicYN="Y">Sir2</Keyword>
<Keyword MajorTopicYN="Y">TORC1</Keyword>
<Keyword MajorTopicYN="Y">aging</Keyword>
<Keyword MajorTopicYN="Y">cytoplasmic pH</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32449834</ArticleId>
<ArticleId IdType="doi">10.1111/acel.13151</ArticleId>
<ArticleId IdType="pmc">PMC7294778</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Neurosci Res. 2011 Nov;89(11):1723-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21826702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Aug 7;55(3):409-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Oct 11;5:148</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15476558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2017 Nov 15;130(22):3878-3890</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2000 Oct;79(4):2199-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11023924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12(6):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(1):31-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17401334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Mar 13;290(11):7221-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25631054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Nov 10;1469(3):133-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11063881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Nov 18;310(5751):1193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16293764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 1998 Dec;2(6):741-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9885562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1993 Oct;9(10):1075-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8256514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Sep 02;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26329457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Oct 12;550(7675):265-269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28976958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jan 1;10(1):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21191185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2011 Sep 16;43(6):973-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2017 Jun 12;13(6):e1006835</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28604780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2007 Nov;8(11):917-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17912264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Oct;1810(10):933-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2014 Jun;13(6):706-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24706019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2010 Aug 4;29(15):2515-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20581803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15998-6003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15520384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1986 Feb 20-26;319(6055):689-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3005867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2004 Sep;2(9):E296</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15328540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2001 Nov;8(5):1017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Mar 08;2:15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 16;460(7253):392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jan;24(1):338-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Feb 12;41(6):2055-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11827553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Feb 15;12(4):586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9472026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Sep 1;17(17):2162-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12923057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Feb 15;5(2):e9199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20169165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Dec 13;492(7428):261-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Sep 04;3:e03504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25190112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 1;21(19):3475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1991 Oct;115(2):289-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1833410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 31;493(7434):679-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23263183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):853-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Jun;5(6):e155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17550305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Aug;203(4):1733-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27343235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2006 Mar;70(1):177-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16524922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jul 18;283(29):20309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Oct 13;103(2):253-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11057898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Dec 7;282(49):35471-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Oct 1;13(19):2570-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 11;459(7248):802-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19516333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Mar 30;45(6):836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22364741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Mar;64(6):752-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17260088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2013 Sep 3;18(3):416-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24011076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 Jan 15;15(2):265-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8617202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 May 5;264(13):7437-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2523395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Mar 10;1469(1):31-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1983 May 30;156(1):11-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6221943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Mar;39(4):1336-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2017 Jul;591(13):1993-2002</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28486745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2020 Jun;19(6):e13151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32449834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Apr 8;269(14):10393-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8144622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Oct 2;5(10):e261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2015 Aug;15(5):fov030</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26019146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Cell. 2018 Jan 12;5(3):119-136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29487859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2018 Apr 26;14(4):e1007334</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29698392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Jan;11(1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20074526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Oct 15;18(20):2491-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 8;410(6825):227-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11242085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta Mol Basis Dis. 2018 Sep;1864(9 Pt A):2690-2696</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29524633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1995 Oct 6;270(5233):50-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7569949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Jul 14;270(28):17025-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7622524</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Corée du Sud</li>
</country>
</list>
<tree>
<country name="Corée du Sud">
<noRegion>
<name sortKey="Devare, Mayur Nimbadas" sort="Devare, Mayur Nimbadas" uniqKey="Devare M" first="Mayur Nimbadas" last="Devare">Mayur Nimbadas Devare</name>
</noRegion>
<name sortKey="Jung, Joohye" sort="Jung, Joohye" uniqKey="Jung J" first="Joohye" last="Jung">Joohye Jung</name>
<name sortKey="Kang, Woo Kyu" sort="Kang, Woo Kyu" uniqKey="Kang W" first="Woo Kyu" last="Kang">Woo Kyu Kang</name>
<name sortKey="Kim, Jeong Yoon" sort="Kim, Jeong Yoon" uniqKey="Kim J" first="Jeong-Yoon" last="Kim">Jeong-Yoon Kim</name>
<name sortKey="Kim, Yeong Hyeock" sort="Kim, Yeong Hyeock" uniqKey="Kim Y" first="Yeong Hyeock" last="Kim">Yeong Hyeock Kim</name>
<name sortKey="Kwon, Ki Sun" sort="Kwon, Ki Sun" uniqKey="Kwon K" first="Ki-Sun" last="Kwon">Ki-Sun Kwon</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000035 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000035 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32449834
   |texte=   TORC1 signaling regulates cytoplasmic pH through Sir2 in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32449834" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020